The role of the stress regime on microseismicity induced by overpressure and cooling in geologic carbon storage
نویسنده
چکیده
Fluid injection in deep geological formations usually induces microseismicity. In particular, industrial-scale injection of CO2 may induce a large number of microseismic events. Since CO2 is likely to reach the storage formation at a lower temperature than that corresponding to the geothermal gradient, both overpressure and cooling decrease the effective stresses and may induce microseismicity. Here, we investigate the effect of the stress regime on the effective stress evolution and fracture stability when injecting cold CO2 through a horizontal well in a deep saline formation. Simulation results show that when only overpressure occurs, the vertical total stress remains practically constant, but the horizontal total stresses increase proportionally to overpressure. These hydro-mechanical stress changes result in a slight improvement in fracture stability in normal faulting stress regimes because the decrease in deviatoric stress offsets the decrease in effective stresses produced by overpressure. However, fracture stability significantly decreases in reverse faulting stress regimes because the size of the Mohr circle increases in addition to being displaced towards failure conditions. Fracture stability also decreases in strike slip stress regimes because the Mohr circle maintains its size and is shifted towards the yield surface a magnitude equal to overpressure minus the increase in the horizontal total stresses. Additionally, cooling induces a thermal stress reduction in all directions, but larger in the out-of-plane direction. This stress anisotropy causes, apart from a displacement of the Mohr circle towards the yield surface, an increase in the size of the Mohr circle. These two effects decrease fracture stability, resulting in the strike slip being the least stable stress regime when cooling occurs, followed by the reverse faulting and the normal faulting stress regimes. Thus, characterizing the stress state is crucial to determine the maximum sustainable injection pressure and maximum temperature drop to safely inject CO2.
منابع مشابه
Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak.
Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26):10164-10168] have claimed that geologic carbon storage in deep saline formations is very likely to trigger large induced seismicity, which may damage the caprock and ruin the objective of keeping CO2 stored deep underground. We argue that felt induced earthquakes due to geologic CO2 storage are unlikely because (i) sedimentary formation...
متن کاملTwo-phase flow effects on the CO2 injection pressure evolution and implications for the caprock geomechanical stability
Geologic carbon storage is considered to be one of the main solutions to significantly reduce CO2 emissions to the atmosphere to mitigate climate change. CO2 injection in deep geological formations entails a twophase flow, being CO2 the non-wetting phase. One of the main concerns of geologic carbon storage is whether the overpressure induced by CO2 injection may compromise the caprock integrity...
متن کاملGeomechanical simulation of the stress tensor rotation caused by injection of cold water in a deep geothermal reservoir
We present a three-dimensional thermohydromechanical numerical study of the evolution and distribution of the stress tensor within the northwest part of The Geysers geothermal reservoir (in California), including a detailed study of the region around one injection well from 2003 to 2012. Initially, after imposing a normal faulting stress regime, we calculated local changes in the stress regime ...
متن کاملImpact of Salicylic Acid on Phenolic Metabolism and Antioxidant Activity in Four Grape Cultivars during Cold Storage
Salicylic acid (SA) plays an important role in the regulation of plant ripening and responses to abiotic stresses. In this study, the protective effect of SA on cold stress-caused oxidative damage in grape (Vitis vinifera L.) bunches was investigated during cold storage. Grape bunches treated with 2 mM SA and stored at 0°C with 85-90% RH for 30 days. Samples were selected from each treatment ...
متن کاملIn-situ stress regime in the Asmari reservoir of the Zeloi and Lali oil fields, northwest of the Dezful embayment in Zagros fold-thrust belt, Iran
This paper analyzes in-situ stress field in the Asmari formation with in the complex structures of the Zeloi and Lali oilfields located in the Dezful embayment, SW Iran. The orientation of the maximum horizontal stress, SHmax is determined on the basis of compressive borehole breakouts and drilling-induced tensile fractures observed in eight oil wells, in which we focus on well-log based method...
متن کامل